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Interaction forces in charged colloids: Inversion of static structure factors
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A simple, easily usable ‘‘predictor-corrector’’ inversion method is presented for extracting the effective pair
potentialu(r ) from static structure factorS(q) of colloidal dispersions and liquids. The method, based on the
Ornstein-Zernike integral equation, replaces the unknown bridge functionB(r ) in the closure with an itera-
tively obtained hard-sphere bridge functionBd(r ). The accuracy of the method is examined by direct deter-
mination ofB(r ) using simulations for extreme examples of pair potential appropriate for charged dispersions.
An example of the application of the method to liquid metals is also presented. The results demonstrate the
need for usingS(q) over the full range ofq’s @especiallyS(q)’s for sufficiently low values ofq# for obtaining
the crucial details ofu(r ). They further show the fallacies associated with the previous analyses ofS(q) that
have fueled the controversy concerning the nature of interaction forces in charged colloids and suggest the
types of data needed for extractingu(r ) for colloidal, Coulombic, and simple fluids.
@S1063-651X~97!04404-8#

PACS number~s!: 82.70.Dd, 05.40.1j, 61.25.Hq
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I. INTRODUCTION

Interaction forces in charged colloidal dispersions ha
received much attention recently because of their broad
nificance to liquid-state physics and other branches of m
rials and condensed-matter physics. Colloidal dispersi
mimic atomic systems in a number of ways; e.g., they exh
gas, liquid, glass, and crystalline phases, serve as mode
Coulombic crystals, and display a rich variety of structu
transitions when confined between two surfaces@1,2#. More-
over, one of the field variables driving the transitions is t
ionic strength of the dispersion, which offers a better con
over the strength and the range of interaction forces t
possible in atomic fluids. Further, because the microstruc
of these dispersions is optically resolvable and since the
namics of the phase transitions is very slow, these collo
serve as excellent model systems for studying a broad c
of condensed-matter phenomena at convenient spatial
temporal scales, as has been demonstrated beautifully
number of recent studies@1,2#. The details of the interaction
forces, particularly in charged colloids~‘‘macroions’’!, are
of interest for a number of reasons.~i! Such dispersions rep
resent highly asymmetric electrolytes and open up interes
opportunities for studying Coulombic systems.~ii ! As we
shall note shortly, a drastic rescaling of the actual numbe
charges on the macroions is needed to explain the obse
behavior and properties. Moreover, many recent experim
tal studies suggest the presence of long-range attractio
situations where classical arguments would predict only
pulsive forces.~iii ! In view of the above, and since not all th
experimental parameters can be controlled precisely, it is
portant to be able to extract the details of the interact
forces unambiguously and without restrictive assumptions
that the experimental observations can be interpreted
self-consistent manner. The purpose of the present paper
provide and illustrate a readily usable method to address
551063-651X/97/55~4!/4423~10!/$10.00
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~iii ! above. In doing so, we shall also clarify the reasons
some of the conflicting results that have appeared in the
erature on the nature of interaction forces in charged dis
sions.

The paper is organized as follows. In Sec. II, we presen
brief discussion of the pair potentials for charge-stabiliz
colloids and the controversy surrounding their validity, sin
these motivate, partly, our interest in the interpretations
static structure factor data. This is followed in Sec. III by t
details of the inversion method proposed here. First, a b
introduction to the so-calledsingle-stepinversions based on
the Ornstein-Zernike integral equation is presented. The
tails of our ‘‘predictor-corrector’’ inversion scheme and i
relation to a more accurate, but more involved, compu
simulation-based corrector are then discussed. In Sec. IV
consider a set of experimental data that appears to lea
conflicting results foru(r ). These data correspond to an e
treme case of charge interactions and serve to illustrate
potential pitfalls of the traditional trial-and-error analyses
S(q) to extractu(r ). We first test the proposed inversio
scheme using Monte Carlo simulations corresponding to
above data and demonstrate that the proposed method
spite the approximation involved in the corrector step, c
distinguish qualitative differences in the potentials accu
rately and, moreover, can providequantitativeresults within
about 3–7 % error, i.e., well within typical experimental e
rors. The implications of these results to the previously
vanced interpretation of the data are also discussed in
section. Finally, we illustrate the ease of application of t
method and the quality of the results that can be obtained
using scattering data for liquid Cu and compare our res
with the potential obtained previously by other means. So
closing remarks and a brief discussion of the types of d
needed for extractingu(r )’s for highly charged dispersion
follow in Sec. V.
4423 © 1997 The American Physical Society
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II. INTERACTION POTENTIALS
IN CHARGE-STABILIZED COLLOIDAL DISPERSIONS

The classical form of the potential between two mac
ions, formulated by Derjaguin, Landau, Verwey, and Ov
beek ~DLVO! using the Debye-Hu¨ckel linearization of the
Poisson-Boltzmann equation, is purely repulsive and is gi
by the Yukawa form@3#

uDLVO~r !5H ` if r,s
~Ze!2

4pe

eks

~11ks!

e2kr

r
if r>s,

~1!

wherer is the distance between the macroions of diametes,
k21 is the Debye screening length,e is the dielectric constan
of the suspending medium, andZe is the charge of the mac
roion. The DLVO potential has been used for explaining
variety of experimental observations ranging from sedim
tation data, phase boundaries in phase diagrams, osm
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pressures, and elastic constants. In general, Eq.~1! has been
the standard choice even under conditions at which the
sumptions underlying its derivation break down. However,
most such cases it has been necessary to replace the
chargeZe by a significantly smaller ‘‘renormalized’’ charg
Z* e, with the justification that the renormalization accoun
for the nonlinear screening of the macroions by the coun
rions and coions.

However, there have been a number of recent experim
tal observations, such as the existence ofvapor-liquid tran-
sitions in charged dispersions@4# and stable voids in macro
scopically homogeneous dispersions~see Ref.@1#!, that have
led some to question the validity of Eq.~1! from a funda-
mental standpoint. Further, recent two-dimensional~2D! ex-
periments~based on confining a single layer of particles b
tween two charged plates! also suggest the existence of lon
range attraction@5,6#. Numerous attempts have been made
explain such results using a potential derived by Sogami@7#,
which has been the focus of much controversy@8#:
uSog~r !5H ` if r,s
~Ze!2

2e

2 sinh2~ks/2!

ks S 21ks coth~ks/2!

r
2k De2kr if r>s.

~2!
the
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Equation~2! includes a long-range, counterion-mediated
tractive component~in addition to a short-range repulsion!
and has been used to explain the vapor-liquid transition
the smaller than expected lattice constants in colloidal c
tals observed in experiments with charged dispersions@1#.

The basis of the derivation of the Sogami potential a
the origin of the counterion-mediated attraction have co
under criticism in the literature. It is not our objective in th
paper to either elaborate on or resolve the controversies
cerning the DLVO and Sogami potentials. However, beca
these two potentials have been used to interpret the type
data we use in the present paper and motivate, partly,
focus on the inverse problem addressed in this paper, a
mention of the source of the controversies is in order. Firs
may be noted that the classical DLVO potential is the pot
tial of mean force between two interacting particles in aca-
nonicalensemble; i.e., the potential represents the Helmh
free energy for the interacting electrical double layers.
contrast, Sogami’s derivation resorts to a ‘‘Gibbsian’’ d
scription of the interaction potential—an approach that
its origin in Sogami’s division of the volume around ea
macroion into two regions, one containing the relative
tightly bound counterions close to the macroion and the o
containing the rest. To account for the differential accessi
ity of the total volume to the counterions, Sogami define
fictitious membrane~i.e., for mathematical purposes only!
around each macroion to separate the bound counter
from those in the bulk solution. The long-range attraction
a result of this mathematical construction, and the valid
implications, and consequences of such a construction h
come under criticism and have been the focus of much
bate in the literature. The pros and cons of the Sogami
-
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malism are discussed in detail by Jo¨nssonet al.and Smalley
@8#, and we refer the readers to those discussions and
references therein.

Because of their insensitivity to the details of the pote
tial, many of the properties mentioned earlier~e.g., osmotic
compressibility and elastic constants! can be described satis
factorily using either Eq.~1! or Eq.~2! ~or others!. Moreover,
in fitting such properties one introduces another level of
bitrariness by treatingZ andk as adjustable parameters@9#
~in addition to thea priori assumptions that are already ma
concerning the forms of the potentials!. As a result, such
procedures for extractingu(r ) from S(q) severely restrict
~and clearly bias! the results obtained and areindirect and
unreliable probes ofu(r ).

A more direct probe of the interaction potential is possib
through the use of the positional correlations among the p
ticles, obtained from the static structure factorS(q) mea-
sured through radiation scattering techniques or equivale
from g(r ) measured using optical microscopy. The lat
method, made possible because the positions of the part
can be resolved and recorded optically in the case of collo
in the appropriate size range, has been used recently to p
the potentials in three-dimensional@10# and two-dimensional
@5,6# systems. For example, Crocker and Grier@10# record
the trajectory of a charged particle in the vicinity of a seco
particle held stationary with an optical trap in a dilute d
persion. The pair potential is then given simply bybu(r )
52ln g(r ), whereb215kBT. Pair correlation functions a
larger concentrations are accessible in 2D experime
since, in this case, the dispersion is confined to a single la
between two charged plates~although the use of charge
confining plates does introduce an uncertainty in the in
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pretation of the data!. Kepler and Fraden@5# have recently
obtainedg(r )’s from such experiments and use a fitting pr
cedure based on a preselected form of the potential to ob
u(r )—an approach that is similar to that of Tataet al. @9#
and, as a result, carries with it the biases or assumpt
implicit in the selected potential. The experiments
Carbajal-Tinocoet al. @6# are similar to those of Kepler an
Fraden@5#, but the data analysis used by Carbajal-Tino
et al. differs from those used by Tataet al. @9# and Kepler
and Fraden@5# and is related to some of the methods w
shall discuss in the following section.

III. INVERSION BASED ON THE ORNSTEIN-ZERNIKE
EQUATION

Extracting information onu(r ) from S(q) has been a
problem of long-standing interest in physics. The class
approach to this problem is the one we have alluded to in
previous section, namely, to fit the experimentally obser
S(q) using apreselectedpotential and a suitable theory th
relatesu(r ) to S(q)—an approach that we refer to as th
forward formalism. In this approach one usually seeks
parametersof an assumed potential rather than the poten
itself. This approach has been very popular in the analysi
the experimentalS(q)’s for micellar solutions and charge
colloids @11–13#. As already noted, a major drawback of th
method is that it requiresa priori information on the func-
tional form of the potential; any assumptions made for t
purpose clearly bias the results of the analysis. A classic c
of such a bias and the resulting contradictions in the
tracted potentials are evident from the results reported
Tata et al. @9#, who find that their experimental data o
charged latex dispersions can be fitted, within statistical
curacy, using twoqualitatively different potentials, one
purely repulsive~of the DLVO form! and the other with a
long-rangeattraction ~a Sogami potential!. We shall defer
further comments on this contradictory observation to S
IV.

An alternative route to the analysis is to devise a sche
to ‘‘invert’’ the S(q) data without making any assumptio
about the form or the parameters of the pair potential. T
inverseproblem is the one that forms the focus of this pap
For reasons that will become clear shortly, we choose
integral-equation method based on the Ornstein-Zern
equation for this purpose.

As is well known, the structure factorS(q) is given by the
Fourier transform of the total correlation functionh(r )
@5g(r )21#:

S~q!511rE h~r !e2 iq•rdr , ~3!

with r being the number density of the particles. The fun
tion h(r ) can be written in terms of the direct correlatio
function c(r ) using the Ornstein-Zernike~OZ! equation

h~r !5c~r !1rE h~r 8!c~ ur2r 8u!dr 8, ~4!

which can be solved, in principle, using the following exa
closure relation:
in
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c~r !52bu~r !1h~r !2 ln@h~r !11#1B~r !, ~5!

whereB(r ) is the so-calledbridge functionrepresenting the
sum of an infinite series of elementary clusters in terms oh
bonds@14#. SinceB(r ) is analytically intractable, a numbe
of approximations to Eq.~5! are normally used in the for
ward methods based on Eq.~4!. Despite the attendant limi
tations, the relative convenience and successes of app
mate closures@such as the Perkus-Yevick~PY! and the
hypernetted-chain~HNC! approximations# in the study of
simple fluids and liquid metals have largely been the rea
for the popularity of the Ornstein-Zernike equation in liqui
state physics.

A. Single-step inversions based on the OZ equation

Not surprisingly, for the same reasons, the OZ formali
also lends itself naturally to the solution of the inverse pro
lem, as illustrated by the pioneering work of Johnsonet al.
@15# for rare-gas liquids and liquid metals. The approach
Johnsonet al. is based on the PY and HNC approximatio
to the closure equation~5!. The PY and HNC closures rep
resent specific approximations for the bridge function~see,
for example, Hansen and McDonald@14#! and restrict the
accuracy of the results of the inversion severely at liq
densities ~although they have been used recently
Carbajal-Tinocoet al. @6# to analyze their 2D data on dispe
sions!. For example, the HNC closure corresponds to tak
B(r ) in Eq. ~5! to be identically equal to zero. The extracte
potentials under such assumptions sometimes do not
any resemblance to the original potentials, as has been d
onstrated by Ailawadi@16#. However, formal inversion
schemes based on approximate closures relate the stru
factor S(q) @or, equivalently,g(r )# to u(r ) in a simple
fashion, and the pair potential can be obtained in a straig
forward manner from a given experimentalS(q). Therefore,
inversion schemes that rely on such simple rearrangem
of the closure equation are often called ‘‘single-step’’ inve
sions, as opposed to the ‘‘predictor-corrector’’ schem
which seek iterative corrections to the closure at each st

One can achieve a significant improvement over the
and HNC predictions by substitutingBd(r ), the bridge func-
tion for a hard-sphere fluid with a suitably chosen ha
sphere diameterd, for the actual unknownB(r ) in Eq. ~5!.
The choice ofd is usually based on a criterion suggested
Lado in his reference hypernetted-chain~RHNC! theory
@17#:

E ]Bd~r !

]d
@g~r !2gd~r !#dr50. ~6!

We shall refer to this as thesingle-step RHNC inversion.

B. The proposed ‘‘predictor-corrector’’ method

If one is willing to sacrifice the convenience of single-st
inversions for a significant improvement in accuracy, theex-
act closure can be incorporated in the inversion by empl
ing an iterativescheme in combination with computer sim
lations at each iteration, as first illustrated by Reattoet al.
@18#. In order to place the iterative methods@19#, including
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the simpler one we propose in this paper, within a unifi
framework, it is convenient to recast the OZ equation and
closure as follows.

The basic idea behind any inversion scheme based on
OZ equation is to use Eq.~4! in combination with Eq.~5! to
extractu(r ) from the experimentalS(q) at the known den-
sity r of the system. Since the OZ equation can be use
relate c(r ) in the closure to the experimental dataS(q)
through

c~q!5
1

r F12
1

S~q!G ~7!

it is the lack of a direct link between the experimental d
andB(r ) that prevents one from using Eq.~5! to obtainu(r )
directly from S(q). The single-step inversion methods c
cumvent this problem by either neglectingB(r ) altogether
~as in the HNC inversion! or approximating it in terms of
known information ~as in the PY and in the single-ste
RHNC inversions!.

We begin our discussion of iterative methods by first w
ing Eq.~5! relative to the corresponding closure for a fluid
as-yet-unknown potentialu8(r ) as follows:

bu~r !5 lnS y8~r !

@h~r !11# D1@h~r !2h8~r !#2@c~r !2c8~r !#

1D@u~r !,u8~r !#, ~8!

where the prime identifies the functions corresponding
u8(r ), and

y8~r !5g8~r !ebu8~r ! ~9!

is thecavity function. The task of obtaining the requiredu(r )
now reduces to choosingu8(r ) such thatD[u(r ),u8(r )]→0,
where D[u(r ),u8(r )]5[B(r )2B8(r )]. In an iterative
scheme, one starts with a suitably chosen initial guess
u8(r ) and computes the correspondingy8(r ), h8(r ), and
c8(r ) to obtain an improvedu(r ), with D set to zero. In this
sense, Eq.~8! becomes thepredictor. Thecorrector step in-
volves refining this prediction usingy(r ), h(r ), and c(r )
based on the result of the previous step in place of
primed quantities. How one obtains the correlation functio
in the corrector step distinguishes the different ‘‘predict
corrector’’ formalisms. One can use computer simulations
each step to obtainy8(r ), h8(r ), andc8(r ) as suggested firs
by Reattoet al. @18#. However, for reasons that will be dis
cussed later, we propose the following, simpler ‘‘predict
corrector’’ formalism based on a hard-sphere poten
u8(r )5ud(r ), whered is the hard-sphere diameter. We sh
use an iterative scheme to obtain the fixed pointd, and hence
u(r ), with Eq. ~8! @with D set to zero# serving as the ‘‘pre-
dictor.’’ The primary advantage for replacingu8(r ) with
ud(r ) is the availability of an extremely accurate para
etrized form foryd(r ), the hard-sphere cavity function@20#
@and, hence,Bd(r )#. At first glance, using a hard-sphere re
erence might appear to be a severe approximation; howe
it is well known that, at high densities, the short-range rep
sive core ofu(r ) determines the behavior of the structu
factor and the bridge function of the fluid. Further, compu
simulations show that even theB(r )’s for full potentials dif-
d
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fer from Bd(r )’s for suitably chosend’s by at most 10% in
the regions of interest in the inversion@21#. We shall discuss
the accuracy of this choice further in Sec. IV.

In the inversion proposed here, we first obtain an init
estimate ofd using the relation between the isothermal co
pressibility andS(q50), viz.,

1

S~0!
5F]~bP!

]r G
T

~10!

in which an equation such as the Carnahan-Starling equa
@22# is sufficient for relating the pressureP to d. The first
approximation tou(r ) based on thisd is then split into a
core partuc(r ) and a perturbationup(r ) according to the
Weeks-Chandler-Andersen criterion@23#:

u~r !5uc~r !1up~r !. ~11!

The above core part of the potential is then used in the c
rector step to refine the correlation functionsy8(r ), h8(r ),
and c8(r ) @or, equivalently,B8(r )#. Therefore, the require
ment thatD→0 is sought by obtaining an improvedd based
on uc(r ), using a criterion such as

E ]yd~r !

]d
@e2buc~r !2e2bud~r !#dr50, ~12!

which minimizes the difference between the free energies
two fluids ~at the given densityr! interacting throughud(r )
anduc(r ), respectively@24#. This new diameter is now use
in Eq. ~8! to improveu(r ), and the procedure is repeate
until d and u(r ) converge. Notice that the aboveiterative
improvement of the hard-sphere diameter distinguishes
method from the single-step RHNC method mentioned e
lier.

C. Computation of hard-sphere correlation functions

There are two items that require attention in using
hard-sphere reference as the corrector. The first is the a
racy of replacing the actual bridge functionB8(r ) of the
iterate u8(r ) with the hard-sphere bridge function corr
sponding touc(r ), and the second is the calculation ofBd(r )
for a given diameterd. We shall defer the discussion of th
first item to Sec. IV and focus on the second here.

It follows from Eq. ~5! that the hard-sphere bridge func
tion Bd(r ) is given by

Bd~r !5cd~r !1 lnyd~r !2hd~r !. ~13!

We have used the Henderson and Grundke@20# correlation
for yd(r ), which is based on a cubic polynomial fit fo
ln y(r ) for r,d, for obtainingBd(r ). The coefficients of the
cubic polynomial are determined using the well-known ma
roscopic properties of the hard-sphere fluid and the Ve
and Weis @25# semiempirical pair-distribution function
gd(r ). The accuracy of the Henderson-Grundke parametr
tion of yd(r ) is estimated to be within about 3% of the exa
values even for a reduced density,rd3, as large as 0.8. The
correlation for lnyd(r ) is in principle sufficient for calculat-
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FIG. 1. The experimental structure factor for
charged dispersion along with the calculatedS(q)
based on the DLVO and Sogami potentials sho
in Fig. 2. See Tataet al. @9# and Salgiet al. @28#
for the parameters.
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ing Bd(r ) from Eq. ~13! since one can use the OZ equati
to evaluatecd(r ) from the parametrizedyd(r ), which is
equal to@hd(r )11# for r.d. However, it is well known that
even small changes inhd(r ) can cause large changes in t
tail of cd(r ). Therefore using the Henderson-Grundkeyd(r )
for calculatingcd(r ) is not advisable. Instead, we have us
the correlation forcd(r ) given by Grootet al. @26#; unlike
the Verlet-Weis correlation, which is based on Monte Ca
simulation results with 108 particles, the correlation of Gro
et al. is based on simulations of fairly large-size syste
~number of particles around 2500! with corrections for the
finite size of the simulation box. The error involved in th
resulting parametrization ofcd(r ) is less than 1% for
rd3,0.9 andr,d. The absolute error incd(r ) is estimated
to be about 1–2% forr.d in the same range of densities

IV. DISCUSSION

In this section, we shall use a typical set of experimen
structure factor data reported in the literature to examine
potential pitfalls of using forward schemes for extracting p
potentials and to test the accuracy of the hard-sph
corrector-based inversion method presented in Sec. II
Following this, an application of the inversion method f
liquid metals is discussed in order to illustrate the ease
application and the larger utility of the proposed method.

A. Fitting methods for obtaining u„r … from S„q…

In the following, we use the scattering data reported
Tata et al. @9# for a charged dispersion of polystyren
spheres of diameters50.109 mm. Although the volume
fraction of the dispersion corresponding to the data
0.931023, the effective volume fraction is rather large
~;0.4! because of the strong excluded-volume effect due
o
t
s

l
e
r
e-
.

f

y

s

o

the long range of the repulsion and is close to the ‘‘sol
liquid’’ boundary. Tataet al.fit the experimentalS(q) over a
limited range ofq’s ~near the primary peak! quite satisfacto-
rily with Eq. ~1! and Eq. ~2!, but usingk as an adjustable
parameter; see Fig. 1. The resulting potentials, shown in
2, differ significantly from each other forr*9s, which cor-
responds toqs&0.6 in the Fourier space. As can be se
from Fig. 1, this range ofqs coincides with the rangenot
included in the fitting procedure used by Tataet al., and has
a bearing on the apparently contradictory results of
analysis, as we shall see shortly.

The fact that the data shown in Fig. 1 can be fitted us
the Sogami potential equally acceptably has been use
question the validity or the adequacy of the DLVO potent
for highly charged dispersions. We shall use the above se
data as a reference for testing our inversion method and
that process, for shedding some further light on the ab
contradictory results.

FIG. 2. The theoretical DLVO and Sogami potentials used
Fig. 1 ~solid and dashed lines!. Also shown are results obtaine
from the inversion ofS(q)’s shown in Fig. 4~symbols!.
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B. The accuracy of the predictor-corrector inversion method

Although the experimental data in the above example
available down toqs50.25, because estimates of expe
mental errors are not available and since data belowqs
,0.25 are needed, we resort to Monte Carlo simulations
test the inversion method.

Standard canonical Monte Carlo simulations based on
Metropolis algorithm are used to generateS(q) using ~typi-
cally! 2048 particles and periodic boundary condition
Simulations with a larger number of particles lead to t
same results within statistical accuracy. The radial distri
tion function g(r ) is obtained as an average over at le
4000 Monte Carlo steps~i.e., about 83106 configurations!
after equilibration. The radial distribution functions thus o
tained for both the DLVO and the Sogami potentials in F
2 are shown in Fig. 3. As can be noted, theg(r )’s for these
two ~evenqualitativelydifferent! potentials are almost iden
tical ~except for a small out-of-phase oscillation! since the
repulsive core dominates the spatial structure of the fluid
the high effective volume fractions corresponding to the c
ditions used. Such a situation should be expected when
the mean interparticle distance~as determined by the overa
density! is about the same as the location of the minimum
the potential. In such cases, the presence of the attra
minimum in the pair potential does not lead to quantitat
differences ing(r ) that are easily distinguishable.@As a re-
sult, fittingg(r )’s theoretically by adjusting parameters of a
assumedu(r ) is highly unreliable.# In addition, the ‘‘core’’
of u(r ) ~r&9s in this case! has a significant influence on th
long-wavelength oscillations ing(r ). This effect is usually
obscured ing(r ) and is most easily seen inS(q) in the low-q
region @i.e., for q,qmax, whereqmax is the location of the
primary peak inS(q)#. The low-q region of the structure
factor is, therefore, a better measure of order in the syste
such instances and is very important in the inversions.

As noted in Eq.~3!, S(q) is obtained by Fourier trans
forming g(r ), but, in the case ofg(r )’s obtained from simu-
lations, Eq.~3! leads to accurate results only forS(q) near
and beyond the primary peak. The magnitude ofS(q) in the

FIG. 3. The radial distribution functiong(r ) from Monte Carlo
simulations for a charged dispersion with the DLVO and Soga
potentials shown in Fig. 2. See Tataet al. @9# and Salgiet al. @28#
for the parameters.
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low-q region is very noisy because of the finite size of t
simulation box. Therefore it is necessary to calculateS(q) in
the low-q region by the direct-averaging procedure su
gested by Frenkelet al. @27#. TheS(q)’s for the two poten-
tials shown in Fig. 2 have been generated forqs*0.075
using the above procedure and are shown in Fig. 4. Ad
tional details on the simulations and estimates of statist
errors are available elsewhere@28#. Figure 4 shows that the
magnitudes ofS(q) at low q are quite low; i.e., the isother
mal compressibility is very low, as one would expect f
strongly repulsive interactions. Also, the simulatedS(q)’s
for the two potentials are practically the same near and
yond qmax and are essentially the same as the experime
S(q) shown in Fig. 1. It is, therefore not surprising that th
experimentalS(q) can be described using the two potentia
shown in Fig. 2 with the same level of accuracy@29#. How-
ever, a careful examination of the low-q region reveals dif-
ferences between the twoS(q)’s that are significant for the
interpretation of interaction forces~see the inset in Fig. 4!. In
particular,S(q) of the Sogami potential shows an upwa
turn for qs,0.25, consistent with the fact that the attracti
component inuSog(r ) renders the system more compressib

We have used theg(r )’s andS(q)’s obtained from the
simulations to test the inversion scheme. The systems re
sented by these data provide a very rigorous test of
method since theeffectivevolume fraction of the dispersion
is near freezing~as evident from the range of the repulsion
the potentials!. The result for the potential with long-rang
attraction is shown in Fig. 3, along with the original pote
tial, and it is evident that the inversion recovers both t
repulsive core and the attractive tail with excellent accura
The steep repulsive core of the potential can be recovere
to about 10kBT ~although only a portion of the results ne
the core is shown!. In the case ofuDLVO(r ), which offers a
much more stringent test of the inversion, the potential d
not have a minimum nor does it cross zero, and the sep
tion of the iterates has to be done at some arbitrary po
One choice is to select a pointr s such that
10kBT,u(r s),2kBT. Separation points withu(r s).10kBT
are not useful sinceg(r ) is insensitive to the potential in thi

i
FIG. 4. The structure factors for the DLVO and the Soga

potentials obtained from simulations. The inset shows the lowq
results.
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region. The inverted potential in this case is also shown
Fig. 2 along with the original. Again, excellent agreeme
between the two is obtained.

Somewhat more accurate results can be obtained if
uses a rigorous calculation of the bridge function at e
iteration using simulations as the ‘‘corrector’’ for the itera
u8(r ) from the previous step, as proposed first by Rea
et al. @18#. This procedure can lead to a final potential w
about less than 2–3% error if sufficiently accurate struct
factors~equivalently, bridge functions! are calculated in the
simulations at each step in the iteration. However, suc
procedure is quite time consuming and cannot be used e
since extensive simulations are needed at each iteration@with
accompanying extension and refinement of theg(r ) for ob-
tainingS(q)#. For example, for the results presented in t
paper, about 20 iterations will be required, with each ite
tion requiring many hours of computer simulations and
tensions. Further, in applying the method to real data, i
unreasonable to demand a level of accuracy in the corre
beyond what is justified by the errors in experimentalS(q)’s.
Our objective in this paper has been to seek a method
avoids the use of computer simulations at every step in
iteration while restricting the error in the extracted poten
to an acceptable level. To this end, the procedure we sug
takes advantage of the availability of a parametrized corr
tion for hard-sphere bridge function and provides a sche
for the selection of the best hard-sphere diameter under a
minutes of calculations. In addition, the error in the invert
potential is under 6–7% even in extreme cases such as
ones illustrated here. However, if further improvements
warranted and are justified by the quality of the experimen
data, one can use our results as the starting point in
simulation-based corrector of Reattoet al. to fine-tune the
result.

C. Accuracy of replacingB„r … with Bd„r …

In order to better understand the error arising from the
of the hard-sphere corrector, we have calculated the br
functions for the actual potentials and for the correspond
hard-sphere fluids withd determined by Eq.~12!. Although,
in principle, the bridge function can be calculated for a giv
u(r ) @or h(r )# in terms of an infinite series ofh-bonded
elementary diagrams, the convergence of such a series i
slow for such an approach to be of any practical use. Co
puter simulations, on the other hand, provide a better an
highly accurate route to the calculation of the bridge fun
tion. A rearrangement of Eq.~5! shows how one can calcu
lateB(r ) if u(r ) andg(r ) are known:

B~r !5c~r !1 lny~r !2h~r !. ~14!

The calculation is straightforward for radial distances n
and beyond the first peak ing(r ) sincey(r ) in Eq. ~14! can
be calculated easily from the computedg(r ) and the known
u(r ) using Eq. ~9!. @The direct correlation functionc(r )
needed in Eq.~14! follows from the OZ equation; see Eq
~7!.# However, this procedure is inadequate in the core
gion of the potential, whereg(r )'0; in particular, a direct,
more accurate determination ofy(r ) is needed.

We use the Henderson method@30,21# to calculate the
cavity function directly using simulations. The cavity fun
n
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tion in the canonical ensemble is given by

y~r !5ebm^e2bS j52
N11u~r1 j !&, ~15!

where ^ & represents the ensemble average andm is the re-
sidual chemical potential. Equation~15! relatesy(r ) to the
interaction potential between a ‘‘ghost’’ particle labeled ‘‘1
and theN real particles in the simulation box. The gho
particle is so named since it does not influence the movem
of the other particles. The exponent of the Boltzmann fac
in Eq. ~15! is the sum of the potential of interaction of th
ghost particle with all particles ‘‘j ’’ other than a ‘‘second’’
particle fixed at a distance ofr . Since the labeling of thereal
particles is arbitrary, any of theN particles can serve as th
‘‘second’’ particle. This implies that each configuration ge
erated in the simulation provides the Boltzmann factor in E
~15! for N values ofr . The residual chemical potentialm in
Eq. ~15! can also be calculated as a part of the same si
lation using the Widom test-particle insertion method@31#.
Since the presence of the ghost particle does not disturb
equilibrium configurations generated by the Metropolis alg
rithm, the calculation ofg(r ) also can be carried out simu
taneously.

Although the cavity function can be calculated for all i
terparticle distances using the above procedure, for the
gion beyond the core of the potential it is much more e
cient to calculatey(r ) from g(r ) andu(r ) using Eq.~9!, as
noted earlier. For inside the core, however, the use of
~15!, or appropriate alternatives@21#, is essential.

We have calculatedy(r ) from simulations usingN52048
real particles and one ghost particle for the potentials con
ered in this paper. The corresponding hard-sphere fluids
not require simulations, as parametrized correlating eq
tions for bothyd(r ) andBd(r ) are available in the literature
@20,32,33#, as already noted in Sec. III C. An accurate det
mination ofB(r ) allows one to examine the percentage er
in the inverted potential since

buinv~r !2buactual~r !

buactual~r !
5
Bd~r !2Bexact~r !

buactual~r !
. ~16!

The results show that the percentage error is negligible in
the core and that the only significant difference occurs j
outside the core in the case of both the DLVO and
Sogami potentials.@The largest absolute differences betwe
B(r ) andBd(r ) occur for (r /d) less than about 0.2—a dis
tance so far inside the core that those differences have
significance to the extracted potentials. Therefore, the c
ments below refer tor*d.# For the DLVO potential, the
maximum difference between the actual and the extrac
potential occurs at a distancer of about 10s, wheres is the
actual diameter of the particle. The magnitude of the diff
ence is about 0.06kBT, compared to the actual potential o
about 0.9kBT, corresponding to an error of about 7%. In th
case of the Sogami potential, again the difference is ab
0.08kBT, at the minimum in the potential; this also corr
sponds to an error of about 8%. Sample results for the c
of the Sogami potential are shown in Fig. 5 forr near the
core and beyond.

As noted earlier, the use of simulations as the correcto
each iteration will improve the accuracy of the extracted p
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tential, although the final error is typically about 2–3%—
reduction of about 5% from what was obtained using th
iteratedBd(r ). Exact correctors require, especially for th
types of long-range interactions considered in this paper, e
tensive simulations to reduce the statistical errors and lar
box sizes~and hence largeN’s! to obtainS(q)’s for low
enoughq’s. However, in most cases, the above-mentione
small further reduction in the error does not justify the com
putational effort involved in using a simulation-based corre
tor. Nevertheless, the possibility of using simulations as co
rector does leave open the option of further refining o
results if a higher level of accuracy is needed or justified.

D. Application to a liquid metal

As an example of how our method can be used to pred
the potential as well as the properties of liquids using actu
scattering data, we consider a case of liquid Cu examined
Arai and Yokoyama@34#.

Arai and Yokoyama have used a trial-and-error fittin
method for the experimental structure factor data for liqu
Cu ~at T51423 K and r50.075 54 Å23! measured by
Waseda and Ueno@36# in the low-q region~0.1 Å21<q<2.3
Å21! and by Waseda@35# over a larger range~0.5
Å21<q<17 Å21!. Their goal was to extract the long-range
attractive tail of the effective potential, about which ver
little is known for liquid metals. It is not our objective here
to present a detailed analysis of the method used by Arai a
Yokoyama or to examine the potential they have obtaine
Rather, our primary objective is to illustrate the simplicity o
our method relative to the one used by Arai and Yokoyam
and to show that results of comparable quality~or better! can
be obtained without much effort.

In order to provide an appreciation for how effective po
tentials are usually extracted and ‘‘pieced together’’ from
S(q) data, it is instructive to present some background d
tails on the approach used by Arai and Yokoyama. To sep
rate the effects of the core of the potential from those of th
tail, Arai and Yokoyama first separateu(r ) into a ‘‘refer-
ence’’ part,uref(r ), and a perturbation,up(r ), representing
the long-rangeattraction:

u~r !5uref~r !1up~r !. ~17!

FIG. 5. The bridge function for the Sogami potential and th
hard-sphere fluid with diameter determined by Eq.~12!.
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Since purely repulsiveuref’s overestimate the primary pea
in S(q) significantly, uref(r ) is further decomposed into
purely repulsiveu0(r ) and an attractive tailuattr(r ). Arai and
Yokoyama approximateu0(r ) by an inverse twelfth-power
potential whose parameters they determine by trial and e
~using simulations! such that the experimental structure fa
tor data can be fitted well inthe large-q region. The long-
range attractive tailup(r ) is then obtained using the random
phase approximation from the low-q scattering data via

bup~r !5@~2p!3r#21E
0

q0
4pq2F 1

S~q!
2

1

S0~q!G S sinqrqr Ddq,
~18!

whereq05~18p2r!1/3 andS0(q), the structure factor corre
sponding tou0(r ), is determined again using simulation
Notice that this prescription forup(r ) corresponds to equat
ing up(r ) to c0(r )2c(r ), and ignores the effect ofuattr(r ).
For uattr(r ), Arai and Yokoyama have assumed a negat
inverse sixth-power potential with the same parameters
those ofu0(r ). The effect ofuattr(r ) onSref(q), again exam-
ined using molecular dynamics, is to lower the magnitude
the primary peak. This fitting method is a quite tim
consuming, laborious, piecewise ‘‘reconstruction’’ of the p
tential and is based at least partly onad hocreasoning. How-
ever, the structure factor calculated from their potential
molecular dynamics is in good agreement with the exp
mental one except in the region delimited by the first a
second diffraction peaks, and the total potential reprodu
the low-q experimental data well. The resulting effective pa
potential of Arai and Yokoyama also predicts the heat cap
ity, self-diffusion coefficient, and shear viscosity in ve
good agreement with experimental data.

When applied to the same set ofS(q) data, the predictor-
corrector method we have described in Sec. III leads t
potential that is in very good agreement with the result
Arai and Yokoyama; see Fig. 6. Moreover, in contrast to
assumptions, trial-and-error calculations and computatio

FIG. 6. The inverted potential for liquid Cu atT51423 K ob-
tained from neutron scattering data reported in Waseda@35#. Also
shown is the potential based on the work of Arai and Yokoya
@34#.
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effort involved in the Arai-Yokoyama method, our predicto
corrector method converges within four or five iteration
and the resulting structure factor and properties are wi
about a few percent of the results reported by Arai a
Yokoyama. We shall examine this and additional appli
tions of the present method to liquid metals in a future p
lication.

V. CLOSING REMARKS

We have presented a simple, readily usable ‘‘predict
corrector’’ based on well characterized hard-sphere corr
tion function for the extraction of interaction potential fro
the structure factor data. The previous analyses of inte
tions in charged colloids based on experimentalS(q)’s and
g(r )’s are highly unreliable. In fact, the currently availab
data areinsufficientto resolve the controversies concerni
interaction potentials in charged dispersions,despitenumer-
ous claims to the contrary. However, both the conventio
analysesand inversion methods require very accurate data
low values ofqs. The lowestq at whichS(q) can be mea-
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sured in scattering experiments is restricted by experime
limitations. Moreover, the rather low values ofS(q→0) in
strongly repulsive systems makes accurate measureme
S(q) difficult as they correspond to low intensities in th
scattered radiation and, hence, to relatively high statist
errors. On the other hand, direct imaging experiments of
type described in Refs.@1, 5, 6, 10# offer an opportunity to
measureg(r )’s andS(q)’s much more accurately, even a
very low q’s, and open up new avenues for studying inte
actions in dispersions and, by extension, phase behavior
large class of condensed-matter systems. The propo
method can therefore serve as a tool for systematic anal
of experimental data in colloids as well as Coulombic s
tems and liquid metals.
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