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Interaction forces in charged colloids: Inversion of static structure factors
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A simple, easily usable “predictor-corrector” inversion method is presented for extracting the effective pair
potentialu(r) from static structure factoB(q) of colloidal dispersions and liquids. The method, based on the
Ornstein-Zernike integral equation, replaces the unknown bridge funBtfoj in the closure with an itera-
tively obtained hard-sphere bridge functiBg(r). The accuracy of the method is examined by direct deter-
mination ofB(r) using simulations for extreme examples of pair potential appropriate for charged dispersions.
An example of the application of the method to liquid metals is also presented. The results demonstrate the
need for using(q) over the full range of)’s [especiallyS(q)’s for sufficiently low values ofy] for obtaining
the crucial details ofi(r). They further show the fallacies associated with the previous analys&®pthat
have fueled the controversy concerning the nature of interaction forces in charged colloids and suggest the
types of data needed for extractingr) for colloidal, Coulombic, and simple fluids.
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I. INTRODUCTION (iii) above. In doing so, we shall also clarify the reasons for
some of the conflicting results that have appeared in the lit-
Interaction forces in charged colloidal dispersions haveerature on the nature of interaction forces in charged disper-
received much attention recently because of their broad sigsions.
nificance to liquid-state physics and other branches of mate- The paper is organized as follows. In Sec. Il, we present a
rials and condensed-matter physics. Colloidal dispersionbrief discussion of the pair potentials for charge-stabilized
mimic atomic systems in a number of ways; e.g., they exhibitolloids and the controversy surrounding their validity, since
gas, liquid, glass, and crystalline phases, serve as models tifese motivate, partly, our interest in the interpretations of
Coulombic crystals, and display a rich variety of structuralstatic structure factor data. This is followed in Sec. Il by the
transitions when confined between two surfadeg]. More-  details of the inversion method proposed here. First, a brief
over, one of the field variables driVing the transitions is theintroduction to the SO_Ca||eding|e_step'nversions based on
ionic strength of the dispersion, which offers a better controkhe Ornstein-zZernike integral equation is presented. The de-
over the strength and the range of interaction forces thagyjis of our “predictor-corrector” inversion scheme and its
possible in atomic fluids. Further, because the microstructurgs|ation to a more accurate, but more involved, computer-
of these dispersions is optically resolvable and since the dyg;n, |ation-hased corrector are then discussed. In Sec. IV, we

namics of the phase transitions is very slow, these COHOid%onsider a set of experimental data that appears to lead to

serve as excellent model systems for studymg a broaq Cla%Emflicting results fou(r). These data correspond to an ex-
of condensed-matter phenomena at convenient spatial affeme case of charge interactions and serve to illustrate the
temporal scales, as has been demonstrated beautifully in a g

number of recent studidd,2]. The details of the interaction potential pitfalls of the traditional trial-and-error analyses of
forces, particularly in charged colloidémacroions”), are S(q) to extractu(r). We first test the proposed inversion

of interest for a number of reasor®. Such dispersions rep- scheme using Monte Carlo simulations corresponding to the
resent highly asymmetric electrolytes and open up interestingPove data and demonstrate that the proposed method, de-
opportunities for studying Coulombic systen(d) As we Spite the approximation involved in the corrector step, can
shall note shortly, a drastic rescaling of the actual number oflistinguish qualitative differences in the potentials accu-
charges on the macroions is needed to explain the observégtely and, moreover, can proviggantitativeresults within
behavior and properties. Moreover, many recent experimerbout 3—7 % error, i.e., well within typical experimental er-
tal studies suggest the presence of long-range attraction #ors. The implications of these results to the previously ad-
situations where classical arguments would predict only revanced interpretation of the data are also discussed in this
pulsive forces(iii) In view of the above, and since not all the section. Finally, we illustrate the ease of application of the
experimental parameters can be controlled precisely, it is immethod and the quality of the results that can be obtained by
portant to be able to extract the details of the interactiorusing scattering data for liquid Cu and compare our result
forces unambiguously and without restrictive assumptions swiith the potential obtained previously by other means. Some
that the experimental observations can be interpreted in elosing remarks and a brief discussion of the types of data
self-consistent manner. The purpose of the present paper is teeded for extracting(r)’s for highly charged dispersions
provide and illustrate a readily usable method to address iterfollow in Sec. V.
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Il. INTERACTION POTENTIALS pressures, and elastic constants. In general(Bdas been
IN CHARGE-STABILIZED COLLOIDAL DISPERSIONS the standard choice even under conditions at which the as-
. . sumptions underlying its derivation break down. However, in
_The classical form of the potential between two macro-yagt guch cases it has been necessary to replace the bare
ions, formulated by Derjaguin, Landau, Verwey, and Over-chargeze by a significantly smaller “renormalized” charge

beek (DLVO) using the Debye-Htkel linearization of the 7+ "with the justification that the renormalization accounts
Poisson-Boltzmann equation, is purely repulsive and is giveRior the nonlinear screening of the macroions by the counte-
by the Yukawa forn{3] rions and coions.

However, there have been a number of recent experimen-

*® '2f r<o o tal observations, such as the existencevaypor-liquid tran-
Upvo(r)=4 (Z€)° e*7 e~ — (1)  sitions in charged dispersiofé] and stable voids in macro-
4me (L+ko) 1 It r=o, scopically homogeneous dispersidsse Ref[1]), that have

led some to question the validity of E(l) from a funda-
wherer is the distance between the macroions of diameter mental standpoint. Further, recent two-dimensiq2al) ex-
«1is the Debye screening lengthis the dielectric constant periments(based on confining a single layer of particles be-
of the suspending medium, ade is the charge of the mac- tween two charged platgalso suggest the existence of long-
roion. The DLVO potential has been used for explaining arange attractiofi5,6]. Numerous attempts have been made to
variety of experimental observations ranging from sedimenexplain such results using a potential derived by Sodaii
tation data, phase boundaries in phase diagrams, osmotithich has been the focus of much controvel8j

o if r<eo
Ugod ) = (Ze)? 2 sintf(kal2) |2+ ko coth ka/2) Jew it rma )
2€ KO r

Equation(2) includes a long-range, counterion-mediated at-malism are discussed in detail byndsonet al. and Smalley
tractive componentin addition to a short-range repulsijon [8], and we refer the readers to those discussions and the
and has been used to explain the vapor-liquid transition anteferences therein.
the smaller than expected lattice constants in colloidal crys- Because of their insensitivity to the details of the poten-
tals observed in experiments with charged dispersjths tial, many of the properties mentioned earlierg., osmotic
The basis of the derivation of the Sogami potential andcompressibility and elastic constantan be described satis-
the origin of the counterion-mediated attraction have comeactorily using either Eqg(1) or Eq.(2) (or other3. Moreover,
under criticism in the literature. It is not our objective in this in fitting such properties one introduces another level of ar-
paper to either elaborate on or resolve the controversies comitrariness by treating and « as adjustable parametdig]
cerning the DLVO and Sogami potentials. However, becausén addition to thea priori assumptions that are already made
these two potentials have been used to interpret the types abncerning the forms of the potentialsAs a result, such
data we use in the present paper and motivate, partly, therocedures for extracting(r) from S(q) severely restrict
focus on the inverse problem addressed in this paper, a bri¢and clearly biasthe results obtained and aimedirect and
mention of the source of the controversies is in order. First, iunreliable probes ofi(r).
may be noted that the classical DLVO potential is the poten- A more direct probe of the interaction potential is possible
tial of mean force between two interacting particles inaa  through the use of the positional correlations among the par-
nonicalensembile; i.e., the potential represents the Helmholtiicles, obtained from the static structure facf®(q) mea-
free energy for the interacting electrical double layers. Insured through radiation scattering techniques or equivalently
contrast, Sogami’s derivation resorts to a “Gibbsian” de-from g(r) measured using optical microscopy. The latter
scription of the interaction potential—an approach that hasnethod, made possible because the positions of the particles
its origin in Sogami’s division of the volume around each can be resolved and recorded optically in the case of colloids
macroion into two regions, one containing the relativelyin the appropriate size range, has been used recently to probe
tightly bound counterions close to the macroion and the othethe potentials in three-dimensiorfdl0] and two-dimensional
containing the rest. To account for the differential accessibil{5,6] systems. For example, Crocker and Gfi&0] record
ity of the total volume to the counterions, Sogami defines ahe trajectory of a charged particle in the vicinity of a second
fictitious membrang(i.e., for mathematical purposes oply particle held stationary with an optical trap in a dilute dis-
around each macroion to separate the bound counteriomrsion. The pair potential is then given simply Bwu(r)
from those in the bulk solution. The long-range attraction is=—In g(r), where 8 =kgT. Pair correlation functions at
a result of this mathematical construction, and the validity larger concentrations are accessible in 2D experiments,
implications, and consequences of such a construction haw@nce, in this case, the dispersion is confined to a single layer
come under criticism and have been the focus of much desetween two charged platdalthough the use of charged
bate in the literature. The pros and cons of the Sogami foreonfining plates does introduce an uncertainty in the inter-
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pretation of the dada Kepler and Fradefp5] have recently c(r)=—pBu(r)+h(r)—In[h(r)+1]+B(r), (5)
obtainedg(r)’s from such experiments and use a fitting pro-

cedure based on a prese.lect.ed_ form of the potential to Obtan)hereB(r) is the so-calledbridge functionrepresenting the
u(ry—an approach th‘f"t IS §|m|]ar to that of Tataal. [9] . sum of an infinite series of elementary clusters in termk of
_and,_ as a result, carries with it _the biases or assumpt'orﬁonds[m]. SinceB(r) is analytically intractable, a number
implicit in the selected potential. The experiments ofof approximations to Eq(5) are normally used in the for-
Carbajal-Tinoccet al. [6] are simi_lar to those of Kepler gnd ward methods based on E@). Despite the attendant limi-
Fraden([S], but the data analysis used by Carbajal-TinoCOuins the relative convenience and successes of approxi-
et al. differs from thpse used by Tatt al. [9] and Kepler mate closuregsuch as the Perkus-YevickPY) and the
and Fr_ader[5]_ and is fe'e?te" to some of the methods Wehypernetted-chair{HNC) approximation$ in the study of
shall discuss in the following section. simple fluids and liquid metals have largely been the reason
for the popularity of the Ornstein-Zernike equation in liquid-

IIl. INVERSION BASED ON THE ORNSTEIN-ZERNIKE state physics.
EQUATION
Extracting information onu(r) from S(q) has been a A. Single-step inversions based on the OZ equation

problem of Ion_g—standing interest in physics. The cIa;sicaI Not surprisingly, for the same reasons, the OZ formalism
approach to this problem is the one we have alluded to in thgsg |ends itself naturally to the solution of the inverse prob-
previous section, namely, to fit the experimentally observeqem a5 illustrated by the pioneering work of Johnstral.
S(q) using apreselectegotential and a suitable theory that [15] for rare-gas liquids and liquid metals. The approach of
relatesu(r) to S(q)—an approach that we refer to as the jonnsoret al. is based on the PY and HNC approximations
forward formalism. In this approach one usually seeks they, the closure equatiofs). The PY and HNC closures rep-
parametersof an assumed potential rather than the potentialegent specific approximations for the bridge functiege,
itself. Thi§ approach has bee_n very popu_lar in the analysis of), example, Hansen and McDonald4]) and restrict the
the experimenta8(q)’s for micellar solutions and charged accuracy of the results of the inversion severely at liquid
colloids[11-13. As already noted, a major drawback of this jensities (although they have been used recently by
method is that it requirea priori information on the func- Carbajal-Tinoccet al.[6] to analyze their 2D data on disper-
tional form of the potential; any assumptions made for thissions). For example, the HNC closure corresponds to taking
purpose clearly bias the results_of the anal)_/si§. A qlassic Casg(r) in Eq. (5) to be identically equal to zero. The extracted
of such a bias and the resulting contradictions in the expotentials under such assumptions sometimes do not bear
tracted potentials are evident from the results reported b)gmy resemblance to the original potentials, as has been dem-
Tata et al. [9], who find that their experimental data on gnstrated by Ailawadi[16]. However, formal inversion
charged latex dispersions can be fitted, within statistical acschemes based on approximate closures relate the structure
curacy, using twoqualitatively different potentials,.one factor S(q) [or, equivalently,g(r)] to u(r) in a simple
purely repulsive(of the DLVO form) and the other with & fashion, and the pair potential can be obtained in a straight-
long-rangeattraction (a Sogami potential We shall defer  tgnward manner from a given experimeng{q). Therefore,
further comments on this contradictory observation to0 SeGnyersion schemes that rely on such simple rearrangements
V. ) o i of the closure equation are often called “single-step” inver-
An alternative route to the analysis is to devise a schemgjgns as opposed to the “predictor-corrector” schemes,
to “invert” the S(q) data without making any assumption \yhich seek iterative corrections to the closure at each step.
about the form or the parameters of the pair potential. This one can achieve a significant improvement over the PY
inverseproblem is the one that forms the focus of this papergynd HNC predictions by substitutirgy(r), the bridge func-
For reasons that will become clear shortly, we choose thggon for a hard-sphere fluid with a suitably chosen hard-
integral-equation method based on the Ornstein—Zernikgphere diameted, for the actual unknowiB(r) in Eq. (5).
equation for this purpose. o The choice ofd is usually based on a criterion suggested by
As is well known, the structure fact&®(q) is given by the | 340 in his reference hypernetted-chaifRHNC) theory
Fourier transform of the total correlation functiam(r)  [17];

[=g(r) -1l

f dBg(r) B
o ~5 [0 —gq(n)1dr=0. ®)
S(q)=1+pf h(r)e™'9'dr, 3

. . . _ We shall refer to this as thgingle-step RHNC inversion
with p being the number density of the particles. The func-

tion h(r) can be written in terms of the direct correlation _
function c(r) using the Ornstein-Zernik@)Z) equation B. The proposed “predictor-corrector” method

If one is willing to sacrifice the convenience of single-step
inversions for a significant improvement in accuracy, eixe
act closure can be incorporated in the inversion by employ-
ing aniterative scheme in combination with computer simu-
which can be solved, in principle, using the following exactlations at each iteration, as first illustrated by Reattal.
closure relation: [18]. In order to place the iterative methofdk9d], including

h(r)=c(r)+pf h(r")c([r—r'])dr’, (4)



4426 RAJ RAJAGOPALAN AND K. SRINIVASA RAO 55

the simpler one we propose in this paper, within a unifiedfer from By(r)’s for suitably choser’s by at most 10% in
framework, it is convenient to recast the OZ equation and itshe regions of interest in the inversigpl]. We shall discuss
closure as follows. the accuracy of this choice further in Sec. IV.

The basic idea behind any inversion scheme based on the In the inversion proposed here, we first obtain an initial
OZ equation is to use E@4) in combination with Eq(5) to  estimate ofd using the relation between the isothermal com-
extractu(r) from the experimentab(q) at the known den- pressibility andS(q=0), viz.,
sity p of the system. Since the OZ equation can be used to

relate c(r) in the closure to the experimental da{q) 1 Jd(BP)
through 50~ T} (10
.
1 1
c(q)= - [1— Q) (7) " in which an equation such as the Carnahan-Starling equation

[22] is sufficient for relating the pressuie to d. The first
it is the lack of a direct link between the experimental data@pproximation tou(r) based on thigl is then split into a
andB(r) that prevents one from using E@) to obtainu(r) ~ core partuc(r) and a perturbationuy(r) according to the
directly from S(q). The single-step inversion methods cir- Weeks-Chandler-Andersen criterip23]:
cumvent this problem by either neglectiifr) altogether

(as in the HNC inversignor approximating it in terms of u(r)=uc(r)+up(r). (11
known information(as in the PY and in the single-step
RHNC inversiong The above core part of the potential is then used in the cor-

We begin our discussion of iterative methods by first writ- rector step to refine the correlation functioy{dr), h’(r),
ing Eq.(5) relative to the corresponding closure for a fluid of gnd c'(r) [or, equivalently,B’(r)]. Therefore, the require-
as-yet-unknown potential’(r) as follows: ment thatA—0 is sought by obtaining an improvetibased
onuc(r), using a criterion such as

y'(r) , ,
Bu(r) ln([h(r)+1])+[h(r) h'(r)]—=[c(r)—c’(r)] o)
f —— [e AU —eg=Aud(N]dr=0, (12
+ALu(r),u’(r)], tS) ad
where the prime identifies the functions corresponding tavhich minimizes the difference between the free energies of

u'(r), and two fluids (at the given density) interacting throughuy(r)
) anduc(r), respectivelyf24]. This new diameter is now used
y'(r)=g'(r)ef* " (9 in Eq. (8) to improveu(r), and the procedure is repeated

_ ) ) o ) until d and u(r) converge. Notice that the abowerative

is thecavity function The task of obtaining the requiredr)  improvement of the hard-sphere diameter distinguishes this
now reduces to choosing (r) such thatA[u(r),u’(r)]—0,  method from the single-step RHNC method mentioned ear-
where A[u(r),u’(r)]=[B(r)—B’(r)]. In an iterative |jer.
scheme, one starts with a suitably chosen initial guess for
u’(r) and computes the corresponding(r), h'(r), and

c'(r) to obtain an improvedi(r), with A set to zero. In this
sense, Eq(8) becomes th@redictor. The corrector step in- There are two items that require attention in using the
volves refining this prediction using(r), h(r), andc(r) hard-sphere reference as the corrector. The first is the accu-
based on the result of the previous step in place of theacy of replacing the actual bridge functid (r) of the
primed quantities. How one obtains the correlation functionsterate u’(r) with the hard-sphere bridge function corre-

in the corrector step distinguishes the different “predictor-sponding tau.(r), and the second is the calculationBy(r)
corrector” formalisms. One can use computer simulations afor a given diameted. We shall defer the discussion of the
each step to obtaip’(r), h'(r), andc’(r) as suggested first first item to Sec. IV and focus on the second here.

by Reattoet al. [18]. However, for reasons that will be dis- It follows from Eq. (5) that the hard-sphere bridge func-
cussed later, we propose the following, simpler “predictor-tion B4(r) is given by

corrector” formalism based on a hard-sphere potential

u’(r)=uy(r), whered is the hard-sphere diameter. We shall Ba(r)=cq(r)+Inyqy(r) —hqy(r). 13

use an iterative scheme to obtain the fixed pdirdnd hence

u(r), with Eq. (8) [with A set to zerd serving as the “pre- We have used the Henderson and Grun@ correlation
dictor.” The primary advantage for replacing’(r) with  for yq4(r), which is based on a cubic polynomial fit for
ug(r) is the availability of an extremely accurate param-Iny(r) for r<d, for obtainingB4(r). The coefficients of the
etrized form fory4(r), the hard-sphere cavity functiq20]  cubic polynomial are determined using the well-known mac-
[and, henceB4(r)]. At first glance, using a hard-sphere ref- roscopic properties of the hard-sphere fluid and the Verlet
erence might appear to be a severe approximation; howeveand Weis [25] semiempirical pair-distribution function

it is well known that, at high densities, the short-range repul-gy4(r). The accuracy of the Henderson-Grundke parametriza-
sive core ofu(r) determines the behavior of the structure tion of y4(r) is estimated to be within about 3% of the exact
factor and the bridge function of the fluid. Further, computervalues even for a reduced densipd®, as large as 0.8. The
simulations show that even ttig&{r)’s for full potentials dif-  correlation for Iny4(r) is in principle sufficient for calculat-

C. Computation of hard-sphere correlation functions
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FIG. 1. The experimental structure factor for a
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for the parameters.
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ing B4(r) from Eq. (13) since one can use the OZ equationthe long range of the repulsion and is close to the “solid-
to evaluatecy(r) from the parametrized/y(r), which is  liquid” boundary. Tateet al.fit the experimentab(q) over a
equal to[h4(r) +1] for r>d. However, it is well known that limited range ofg’s (near the primary pealquite satisfacto-
even small changes iny(r) can cause large changes in therily with Eq. (1) and Eq. (2), but usingx as an adjustable
tail of c4(r). Therefore using the Henderson-Grundkgr) parameter; see Fig. 1. The resulting potentials, shown in Fig.
for calculatingc4(r) is not advisable. Instead, we have used2, differ significantly from each other far=9¢, which cor-
the correlation forcy(r) given by Grootet al. [26]; unlike  responds tago=<0.6 in the Fourier space. As can be seen
the Verlet-Weis correlation, which is based on Monte Carlofrom Fig. 1, this range ofjo- coincides with the rangeot
simulation results with 108 particles, the correlation of Grootincluded in the fitting procedure used by Tatzal., and has
et al. is based on simulations of fairly large-size systemsa bearing on the apparently contradictory results of the
(number of particles around 250With corrections for the analysis, as we shall see shortly.
finite size of the simulation box. The error involved in the  The fact that the data shown in Fig. 1 can be fitted using
resulting parametrization oty(r) is less than 1% for the Sogami potential equally acceptably has been used to
pd3<0.9 andr <d. The absolute error iny(r) is estimated question the validity or the adequacy of the DLVO potential
to be about 1-2% for>d in the same range of densities. for highly charged dispersions. We shall use the above set of
data as a reference for testing our inversion method and, in
that process, for shedding some further light on the above
contradictory results.

IV. DISCUSSION

. . . . 4.0
In this section, we shall use a typical set of experimental _
structure factor data reported in the literature to examine the L o
potential pitfalls of using forward schemes for extracting pair 30} o DLVO - Inverted
potentials and to test the accuracy of the hard-sphere- o Sogami- Inverted
corrector-based inversion method presented in Sec. Il B. 20
Following this, an application of the inversion method for = f
liquid metals is discussed in order to illustrate the ease of &
application and the larger utility of the proposed method. < 10}
0.0
A. Fitting methods for obtaining u(r) from S(q) 10
In the following, we use the scattering data reported by s 10 15
Tata etal. [9] for a charged dispersion of polystyrene rlo

spheres of diameter=0.109 um. Although the volume

fraction of the dispersion corresponding to the data is FIG. 2. The theoretical DLVO and Sogami potentials used in
0.9x10°3, the effective volume fraction is rather large Fig. 1 (solid and dashed lingsAlso shown are results obtained
(~0.4) because of the strong excluded-volume effect due tdrom the inversion of5(q)’s shown in Fig. 4(symbols.
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FIG. 3. The radial distribution functiog(r) from Monte Carlo FIG. 4. The structure factors for the DLVO and the Sogami

simulations for a charged dispersion with the DLVO and Sogamipotentials obtained from simulations. The inset shows the dow-
potentials shown in Fig. 2. See Tagaal.[9] and Salgiet al. [28] results.
for the parameters.

low-q region is very noisy because of the finite size of the
simulation box. Therefore it is necessary to calcus(tg) in
Although the experimental data in the above example ar¢ghe low-q region by the direct-averaging procedure sug-
available down togo=0.25, because estimates of experi- gested by Frenkedt al. [27]. The S(q)’s for the two poten-
mental errors are not available and since data befpw tials shown in Fig. 2 have been generated @r=0.075
<0.25 are needed, we resort to Monte Carlo simulations twising the above procedure and are shown in Fig. 4. Addi-

B. The accuracy of the predictor-corrector inversion method

test the inversion method. tional details on the simulations and estimates of statistical
Standard canonical Monte Carlo simulations based on therrors are available elsewhdr28]. Figure 4 shows that the
Metropolis algorithm are used to gener&@) using (typi- magnitudes of5(q) at low q are quite low; i.e., the isother-

cally) 2048 particles and periodic boundary conditions.mal compressibility is very low, as one would expect for
Simulations with a larger number of particles lead to thestrongly repulsive interactions. Also, the simulat8)’s
same results within statistical accuracy. The radial distribufor the two potentials are practically the same near and be-
tion function g(r) is obtained as an average over at leastyond g,,,x and are essentially the same as the experimental
4000 Monte Carlo stepé.e., about &10° configurations  S(g) shown in Fig. 1. It is, therefore not surprising that the
after equilibration. The radial distribution functions thus ob-experimentalS(q) can be described using the two potentials
tained for both the DLVO and the Sogami potentials in Fig.shown in Fig. 2 with the same level of accurd@@]. How-
2 are shown in Fig. 3. As can be noted, thg)'s for these ever, a careful examination of the logvregion reveals dif-
two (evenqualitatively different potentials are almost iden- ferences between the tw8(q)’s that are significant for the
tical (except for a small out-of-phase oscillatjosince the interpretation of interaction forcdsee the inset in Fig.)4In
repulsive core dominates the spatial structure of the fluid aparticular, S(q) of the Sogami potential shows an upward
the high effective volume fractions corresponding to the conturn for qo<0.25, consistent with the fact that the attractive
ditions used. Such a situation should be expected whenevepmponent irug,{r) renders the system more compressible.
the mean interparticle distan¢as determined by the overall We have used thg(r)’s and S(g)’s obtained from the
density is about the same as the location of the minimum insimulations to test the inversion scheme. The systems repre-
the potential. In such cases, the presence of the attractiviented by these data provide a very rigorous test of the
minimum in the pair potential does not lead to quantitativemethod since theffectivevolume fraction of the dispersion
differences ing(r) that are easily distinguishablpAs a re- is near freezindas evident from the range of the repulsion in
sult, fittingg(r)’s theoretically by adjusting parameters of an the potentials The result for the potential with long-range
assumedi(r) is highly unreliable] In addition, the “core”  attraction is shown in Fig. 3, along with the original poten-
of u(r) (r=9c in this casg¢has a significant influence on the tial, and it is evident that the inversion recovers both the
long-wavelength oscillations ig(r). This effect is usually repulsive core and the attractive tail with excellent accuracy.
obscured irg(r) and is most easily seen $(q) inthe lowq  The steep repulsive core of the potential can be recovered up
region[i.e., for q<q,,ax, Whereqm.y is the location of the to about 18zT (although only a portion of the results near
primary peak inS(q)]. The lowq region of the structure the core is shown In the case ofip yo(r), which offers a
factor is, therefore, a better measure of order in the system imuch more stringent test of the inversion, the potential does
such instances and is very important in the inversions. not have a minimum nor does it cross zero, and the separa-
As noted in Eq.(3), S(q) is obtained by Fourier trans- tion of the iterates has to be done at some arbitrary point.
forming g(r), but, in the case afi(r)’s obtained from simu- One choice is to select a pointrg such that
lations, Eq.(3) leads to accurate results only f8(q) near 10kgT<<u(rg)<2kgT. Separation points witb(rg)>10kgT
and beyond the primary peak. The magnitudé@f) in the  are not useful sincg(r) is insensitive to the potential in this
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region. The inverted potential in this case is also shown irtion in the canonical ensemble is given by
Fig. 2 along with the original. Again, excellent agreement
between the two is obtained. y(r):eﬁu<efBE}“IZlU(rlj)>, (15)
Somewhat more accurate results can be obtained if one
uses a rigorous calculation of the bridge function at eachvhere() represents the ensemble average anig the re-
iteration using simulations as the “corrector” for the iterate sidual chemical potential. Equatidii5) relatesy(r) to the
u’(r) from the previous step, as proposed first by Reattdnteraction potential between a “ghost” particle labeled “1”
et al. [18]. This procedure can lead to a final potential with and theN real particles in the simulation box. The ghost
about less than 2—-3% error if sufficiently accurate structurgarticle is so named since it does not influence the movement
factors(equivalently, bridge functionsare calculated in the of the other particles. The exponent of the Boltzmann factor
simulations at each step in the iteration. However, such @ Eq. (15) is the sum of the potential of interaction of the
procedure is quite time consuming and cannot be used easifjhost particle with all particles j* other than a “second”
since extensive simulations are needed at each iteritiim  particle fixed at a distance of Since the labeling of theeal
accompanying extension and refinement of ¢iie) for ob-  particles is arbitrary, any of th particles can serve as the
taining S(q) ]. For example, for the results presented in this“second” particle. This implies that each configuration gen-
paper, about 20 iterations will be required, with each iteraerated in the simulation provides the Boltzmann factor in Eq.
tion requiring many hours of computer simulations and ex-(15) for N values ofr. The residual chemical potential in
tensions. Further, in applying the method to real data, it isq. (15) can also be calculated as a part of the same simu-
unreasonable to demand a level of accuracy in the correct@gtion using the Widom test-particle insertion metH@&d].
beyond what is justified by the errors in experimei@@)’s.  Since the presence of the ghost particle does not disturb the
Our objective in this paper has been to seek a method thaiquilibrium configurations generated by the Metropolis algo-
avoids the use of computer simulations at every step in théithm, the calculation of(r) also can be carried out simul-
iteration while restricting the error in the extracted potentialtaneously.
to an acceptable level. To this end, the procedure we suggest Although the cavity function can be calculated for all in-
takes advantage of the availability of a parametrized correlaterparticle distances using the above procedure, for the re-
tion for hard-sphere bridge function and provides a schemgion beyond the core of the potential it is much more effi-
for the selection of the best hard-sphere diameter under a fewlent to calculatey(r) from g(r) andu(r) using Eq.(9), as
minutes of calculations. In addition, the error in the invertednoted earlier. For inside the core, however, the use of Eq.
potential is under 6—-7% even in extreme cases such as thes), or appropriate alternativg®1], is essential.
ones illustrated here. However, if further improvements are \We have calculateyl(r) from simulations using\=2048
warranted and are justified by the quality of the experimentateal particles and one ghost particle for the potentials consid-
data, one can use our results as the starting point in thered in this paper. The corresponding hard-sphere fluids do
simulation-based corrector of Reattd al. to fine-tune the not require simulations, as parametrized correlating equa-
result. tions for bothy4(r) andBy(r) are available in the literature
[20,32,33, as already noted in Sec. Ill C. An accurate deter-
C. Accuracy of replacing B(r) with B4(r) mination ofB(r) allows one to examine the percentage error

In order to better understand the error arising from the usd! the inverted potential since

of the hard-sphere corrector, we have calculated the bridge

functions for the actual potentials and for the corresponding Puin(T) ~ BUacua(T) — Ba(r) ~Bexac ) (16)
hard-sphere fluids witd determined by Eq(12). Although, BUactual 1) BUactual )

in principle, the bridge function can be calculated for a given

u(r) [or h(r)] in terms of an infinite series dfi-bonded The results show that the percentage error is negligible inside
elementary diagrams, the convergence of such a series is t§e core and that the only significant difference occurs just
slow for such an approach to be of any practical use. Comoutside the core in the case of both the DLVO and the
puter simulations, on the other hand, provide a better and §09ami potential{.The largest absolute differences between

highly accurate route to the calculation of the bridge func-B(r) andBy(r) occur for (/d) less than about 0.2—a dis-
tion. A rearrangement of Eq5) shows how one can calcu- tance so far inside the core that those differences have no

late B(r) if u(r) andg(r) are known: significance to the extracted potentials. Therefore, the com-
ments below refer ta =d.] For the DLVO potential, the
B(r)=c(r)+Iny(r)—h(r). (14 maximum difference between the actual and the extracted

potential occurs at a distanceof about 1@, wherec is the

The calculation is straightforward for radial distances neamctual diameter of the particle. The magnitude of the differ-
and beyond the first peak o(r) sincey(r) in Eq.(14) can  ence is about 0.0&T, compared to the actual potential of
be calculated easily from the computgft) and the known about 0.8T, corresponding to an error of about 7%. In the
u(r) using Eg.(9). [The direct correlation functiore(r) case of the Sogami potential, again the difference is about
needed in Eq(14) follows from the OZ equation; see Eq. 0.0&gT, at the minimum in the potential; this also corre-
(7).] However, this procedure is inadequate in the core responds to an error of about 8%. Sample results for the case
gion of the potential, wherg(r)~0; in particular, a direct, of the Sogami potential are shown in Fig. 5 fomear the
more accurate determination wfr) is needed. core and beyond.

We use the Henderson meth§80,21] to calculate the As noted earlier, the use of simulations as the corrector at
cavity function directly using simulations. The cavity func- each iteration will improve the accuracy of the extracted po-
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hard-sphere fluid with diameter determined by ELp). ) ) o
FIG. 6. The inverted potential for liquid Cu d@=1423 K ob-
tained from neutron scattering data reported in Wag&8a Also
tential, although the final error is typically about 2_3%_ashown is the potential based on the work of Arai and Yokoyama
reduction of about 5% from what was obtained using the 34!
iterated B4(r). Exact correctors require, especially for the
types of long-range interactions considered in this paper, ex-. | Isi , timate th . K
tensive simulations to reduce the statistical errors and larg INCE purely repuisivelr S overestimate the primary pea
box sizes(and hence largéN’s) to obtain S(q)’s for low in S(q) S|gn|f|cantly,uref(r) IS further de'composedllnto a
enoughq’s. However, in most cases, the above-mentione urely repulsweuo(_r) and an attractive talllyy(r). Arai and
small further reduction in the error does not justify the com- okoy_ama approximatelo(r) by an Inverse twelﬁh-power
putational effort involved in using a simulation-based correc-pOt?nt'a! whos_e parameters they dete_rmme by trial and error
tor. Nevertheless, the possibility of using simulations as c:or-(USIng S|mulat|on_)ssuch thqt the experlmer)tal structure fac-
rector does leave open the option of further refining our®’ data can .be f'tﬁd W(?" |rt1‘ne Ial;ggq rdeglpn 'I;]he Ior:jg—
results if a higher level of accuracy is needed or justified. range attractive tal p(r) is then obtaine using the random-
phase approximation from the low-scattering data via
D. Application to a liquid metal

As an e_xample of how our methpd can.be_ used_to predictlgup(r):[(zﬂfp]1jq°4wq2[ 1 1 (smqr)dq,
the potential as well as the properties of liquids using actual 0 S(a) So(@) ]\ ar
scattering data, we consider a case of liquid Cu examined by (18
Arai and Yokoyamd34]. s

Arai and Yokoyama have used a trial-and-error fittingWheredo=(187°p)" and Sy(q), the structure factor corre-
method for the experimental structure factor data for liquidSPoOnding touo(r), is determined again using simulations.
Cu (at T=1423 K and p=0.07554 A3 measured by Notice that this prescription fqup(r) corresponds to equat-
Waseda and Uen(@6] in the low< region(0.1 A-l<q=<2.3" ing up(r) to co(r)—c(r), and ignores the effect afy(r).
A=Y and by Waseda[35] over a larger range(0.5 For uatt,(r_), Arai and Yokoyama_ have assumed a negative
A~1<q=<17 A™Y). Their goal was to extract the long-range nverse sixth-power potential with the same parameters as
attractive tail of the effective potential, about which very those Ofug(r). The effect ofuu(r) on Se(q), again exam-
little is known for liquid metals. It is not our objective here ined using molecular dynamics, is to lower the magnitude of
to present a detailed analysis of the method used by Arai anl€ Primary peak. This fitting method is a quite time-
Yokoyama or to examine the potential they have obtainedéonsuming, laborious, piecewise “reconstruction” of the po-
Rather, our primary objective is to illustrate the simplicity of tential and is based at least partly @t hocreasoning. How-
our method relative to the one used by Arai and Yokoyam&£Ver: the structure faptqr calculated from the|_r potential via
and to show that results of comparable qualiybettey can ~ Molecular dynamics is in good agreement with the experi-
be obtained without much effort. mental one except in the region delimited by the first and

In order to provide an appreciation for how effective po- second diffracti_on peaks, and the total po?ential reproduc_:es
tentials are usually extracted and “pieced together” fromthe Ioqu experl_mental data well. The resqltlng effective pair
S(q) data, it is instructive to present some background dePotential of Arai and Yokoyama also predicts the heat capac-
tails on the approach used by Arai and Yokoyama. To sepdly: self-diffusion c_oeff|C|ent_, and shear viscosity in very
rate the effects of the core of the potential from those of th¢d00d agreement with experimental data.

tail, Arai and Yokoyama first separatgr) into a “refer- When applied to the same set$fq) data, the predictor-
ence” part, U(r), and a perturbationy,(r), representing corrector method we have described in Sec. Il leads to a
the long-rangeattraction: potential that is in very good agreement with the result of

Arai and Yokoyama; see Fig. 6. Moreover, in contrast to the
U(r)=Ueedr)+up(r). (17) assumptions, trial-and-error calculations and computational
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effort involved in the Arai-Yokoyama method, our predictor- sured in scattering experiments is restricted by experimental
corrector method converges within four or five iterations,limitations. Moreover, the rather low values 8(g—0) in
and the resulting structure factor and properties are withirstrongly repulsive systems makes accurate measurement of
about a few percent of the results reported by Arai andS(q) difficult as they correspond to low intensities in the
Yokoyama. We shall examine this and additional applica-scattered radiation and, hence, to relatively high statistical
tions of the present method to liquid metals in a future pub-errors. On the other hand, direct imaging experiments of the
lication. type described in Ref§1, 5, 6, 14 offer an opportunity to
measureg(r)’s and S(q)’s much more accurately, even at
very low g’s, and open up new avenues for studying inter-
. . . actions in dispersions and, by extension, phase behavior in a
We have presented a simple, readily usable “predictoriarge class of condensed-matter systems. The proposed
corrector” based on well characterized hard-sphere correlanethod can therefore serve as a tool for systematic analyses

tion function for the extraction of interaction potential from o experimental data in colloids as well as Coulombic sys-
the structure factor data. The previous analyses of interagems and liquid metals.

tions in charged colloids based on experimei8@)’s and
g(r)’s are highly unreliable. In fact, the currently available
data areinsufficientto resolve the controversies concerning
interaction potentials in charged dispersiodsspitenumer-
ous claims to the contrary. However, both the conventional We thank the National Science Foundation and the Texas
analysesandinversion methods require very accurate data aHigher Education Coordinating Board for partial support of
low values ofgo. The lowestg at whichS(q) can be mea- the research reported here.

V. CLOSING REMARKS
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